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In Table 1 we show an extended comparison of our dataset
to a number of relevant datasets. In Appendices A and B
we discuss the choice of lighting variations in our dataset,
and the choice of sensors. In Appendices C and D we pro-
vide details of data acquisition and camera calibration pro-
cesses. In Appendices E and F we provide details of testing
and evaluation of 3D reconstruction methods on our dataset.
In Appendix G we show complete evaluation results. Finally,
in Appendix H we describe and discuss the variability of key
surface reflection parameters in our dataset.

A. Lighting variability
In Figure 1 we illustrate all 14 lighting setups in our

dataset. Ambient Low and Flash Low correspond to real-time
/ high-noise camera settings for the ambient diffuse lighting
and the phone flashlight. We aimed to provide a broad range
of realistic lighting conditions: directional light sources and
flashlights of the phones provide eight samples of “hard”
light, typical, for example, for streetlight; soft-boxes provide
three samples of diffuse light, typical for indoor illumination;
LED strips imitate ambient light, typical for cloudy weather.

B. Sensors
We aimed to include commodity RGB-D sensors with

different properties. Smartphones are ubiquitous, and are in-
creasingly commonly augmented with a depth sensor, while
Kinect and RealSense devices represent dedicated RGB-D
cameras. We included smartphones that capture depth with
a time-of-flight sensor, Kinect v2 also uses a time-of-flight
sensor but with a higher resolution and accuracy, and the
RealSense device uses stereo-matching of infra-red images
(a different technology). These devices capture depth maps
with different resolution, level of noise, and different arte-
facts, as briefly illustrated in Figure 4. The structured-light
scanner provides the reference 3D data for these devices.

These devices include commodity RGB sensors with dif-

ferent resolutions; we supplemented them with industrial
RGB cameras with high-quality optics and low-noise sen-
sors. The pair of industrial RGB cameras can serve as yet
another source of depth maps based on stereo-matching of
RGB images, in contrast to IR images in RealSense.

The data captured in the same environment with different
sensors can be used to test generalization ability of computer
vision methods, or to train a generator of synthetic data to
reproduce a specific sensor, etc.

C. Data acquisition details
Lens settings. We set the focal distance for the industrial
RGB cameras and for the cameras of the phones to the
expected average distance from the cameras to the surface
of the scanned object, namely 62.5 cm. To extend the depth
of field for the industrial cameras to the whole scanning
area, we set the aperture to the minimal value that does not
cause any visual blur due to diffraction. We kept the lens
parameters for Kinect and RealSense at their factory settings.
White balance. We set the white balance for all RGB
sensors fixed at the start of each scanning session (i.e., daily),
using a black-and-white calibration pattern. Most of our
light sources have the same light temperature so that their
light appears white under this setting, except for the ambient
illumination which has a somewhat higher green component,
and for the flashlight of the phones which has a yellow tint.
We did not fix the white balance setting for Kinect, for which
this control is not available.
Exposure and gain. For Kinect, it is not possible to control
camera exposure and gain directly. Instead, the built-in auto-
exposure function is permanently turned on, which sets the
exposure and gain so that the mean pixel value over the
whole image is 50% gray. Since in our setup a large portion
of the image is the black background, the built-in algorithm
produces over-exposed images. To minimize this effect, we
added a dimming light filter mounted on a servomotor to the
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Figure 1. Lighting setups in our dataset: ambient lighting, a flashlight attached to the camera, three variants of soft light coming from
different directions, and seven variants of hard light. For the ambient and the flash lighting there is an additional low exposure variant: notice
a higher noise level in Ambient Low and Flash Low.

rig, which is placed in front of the RGB camera of Kinect
automatically when the bright light sources are activated,
and removed for the dim ones.

D. Camera calibration details
The original implementation of the calibration pipeline

of [18] supports calibration of rigid camera rigs, however, a
straightforward application of this pipeline for our camera
rig in its entirety proved to be numerically unstable due to
the properties of the setup. Firstly, the included sensors have
a large variation in the field of view (from 30° for the SLS
camera to 90° for the IR sensors of RealSense) and resolution
(from 0.04 MPix for the IR sensors of the phones to 40 MPix
for their RGB sensors). Secondly, the focus of the cameras of
the phones, being fixed programmatically, fluctuates slightly
over time, which we relate to thermal deformations of the
device (see [4] for a study of such an effect). Finally, the
camera rig deforms slightly depending on its tilt in different
scanning positions. To avoid the loss of accuracy we split
the calibration procedure into several steps.

First, we obtained intrinsic camera models for each sensor
independently. Then, for the sensors with a relatively high
resolution and stable focus, namely the SLS and all RGB
sensors except the sensors of the phones, we estimated their
relative position within the rig for its vertical orientation.
Next, we estimated the relative position of RGB sensors
of the phones within the rig, w.r.t. the other sensors. After
that, we estimated the position of each IR (depth) sensor
w.r.t. the RGB sensor of the respective device, assuming
that the sensors are fixed rigidly to the frame of the device.
Finally, we estimated the position of each RGB sensor indi-
vidually for different scanning positions of the robotic arm,
and then linked the positions of all sensors together through
a scanning position with the vertical orientation of the rig.

This whole procedure required capturing thousands of
images of the calibration pattern, which we almost fully
automated with the use of the robotic arm, except for several
manual reorientations of the pattern.

In Figure 2 we show distributions of calibration error for
each sensor at different stages of the calibration procedure.
Note that the resolution of the RGB sensors of the phones
is relatively high compared to the other RGB sensors so a
higher value of the calibration error measured in pixels is
expected.

At the bottom of Figure 2 we show calibration errors for
the straightforward application of the calibration pipeline to
our camera rig. Here, we estimated the relative positions for
a subset of sensors within the rig simultaneously. The mean
error of the straightforward approach is 1.8-5.7 times higher
depending on the sensor compared to ours.

E. Parameters of tested methods
We tested all methods using ground-truth camera poses

and intrinsic camera models, after the refinements of camera
poses and depth camera calibration. We used RGB images
from the right industrial camera and the depth maps from
Kinect at full resolution after removing distortion (which
resulted in a small amount of cropping at the boundaries),
specifically, 2368× 1952 for RGB and 496× 400 for depth.

For each method, we tried to pick the values of the method
parameters which resulted in the best reconstructions on
our dataset, based on 5-10 typical scenes. We describe the
parameters using the original notations from the respective
works.

We tested COLMAP [14–16] with parameters set to their
“performance” values recommended in the software docu-
mentation. Specifically, for feature extraction, we enabled
estimation of affine shape of SIFT features, and enabled
the more discriminative DSP-SIFT features instead of plain
SIFT; for feature matching, we disabled estimation of multi-
ple geometric models per image pair; for patch-match stereo,
we enabled the regularized geometric consistency term; fi-
nally, for stereo fusion we set the minimum number of fused
pixels to produce a point to 3, the maximum relative differ-
ence between measured and projected pixels to 1, and the
maximum depth error to 1 mm.
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Figure 2. Error distributions for camera calibration, as histograms of 2D differences between the detection of a feature on the calibration
pattern and its projection from 3D to the image. The range of each histogram is [−0.2, 0.2] pixels in each dimension. Each histogram
represents one sensor at one of the three steps of the calibration procedure: estimation of intrinsic camera models (first row), estimation of
relative position of the sensor within the rig (second row), estimation of position of the sensor on the scanning trajectory (third row). The
histograms for the IR sensors in the third row are not shown, since the trajectory of the IR sensors is calculated directly from the trajectory of
their RGB companions. The fourth row shows the errors for the baseline approach of estimation of relative positions of the sensors within
the rig (compare with the second row).

We tested ACMP [27, 28] with the default parameters
used in the source code. For this MVS method and the two
methods below we sampled the depth hypotheses uniformly
from 473 mm to 983 mm with a 2 mm resolution, and for
view selection used the strategy proposed in [30], applied to
the reference SL scan instead of a sparse reconstruction of
the scene.

To test VisMVSNet [32, 33] we trained it from scratch on
BlendedMVG dataset [29], which is an extended version of
the BlendedMVS dataset [31], originally used by the authors
of the method. We used the original training parameters and
trained the network on a single Nvidia GTX 1080Ti GPU
for 2 epochs with a batch size of 2 (342K iterations), using
Adam optimizer [7] with a learning rate of 10−4.

We tested VisMVSNet with the number of neighboring
source images Nv = 7, the numbers of depth hypotheses
Nd,1, Nd,2, Nd,3 = 64, 32, 16, the minimal number of con-
sistent views during fusion Nf = 4, and the fusion probabil-
ity thresholds pt,1, pt,2, pt,3 = 0.8, 0.7, 0.8.

We tested UniMVSNet [11, 12] using the published
model trained on DTU dataset [6] and fine-tuned on Blend-
edMVS dataset. We used the number of neighboring
source images N = 11, the numbers of depth hypothe-
ses M1,M2,M3 = 64, 32, 16, and the fusion probability
thresholds ϕ1, ϕ2, ϕ3 = 0.1, 0.15, 0.9.

We tested NeuS [22,23] with the original hyperparameters,
optimizing the network for 300K iterations. To accelerate
convergence and prevent oversmoothing of reconstruction

we cropped the input images for this method to the bounding
box of the object expanded by ∼ 10 pixels.

To test TSDF Fusion [3,5] we used an implementation of
this algorithm from Open3D library [34], with a voxel size of
3 mm, and a TSDF truncation distance of 2 cm. We addition-
ally tested an implementation of this algorithm from [8, 9]
and obtained very similar results; we do not report them.

We tested SurfelMeshing [17, 19] with the number of
inliers for depth filtering set to 1, the depth map erosion
radius set to 0.1, and with 1 iteration of median filtering.

To test RoutedFusion [24, 25] we trained it from scratch
on ModelNet dataset [26]. We used the original training
parameters for ShapeNet dataset [2], with an increased level
of synthetic noise σ = 0.01, as suggested by the authors. We
tested RoutedFusion with a grid resolution of 3843, which
corresponds to a voxel size of 2.6 mm.

We tested Neural RGB-D Reconstruction [1, 13] with
the original hyperparameters, optimizing the network until
convergence for 200K iterations, and sampling the coarse
points on the ray for every 2 mm.

F. Evaluation details
We evaluated 3D reconstruction methods using precision

P (τ) defined as the percentage of reconstruction points
which are closer to the reference surface than a distance
threshold τ ; recall R (τ) defined as the percentage of ref-
erence points which are closer to the reconstruction than
the distance threshold; and F-score F (τ) defined as the
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harmonic mean of precision and recall. Additionally, we
calculated the mean distance from the reconstruction to the
reference, and the mean distance from reference to recon-
struction, which we report in Appendix G.

To calculate the measures based on the distance from the
reference to the reconstruction, we used vertices of the full
SL scan; their average distance from the nearest neighbor is
around 0.15 mm. To evaluate the methods which reconstruct
the surface in the form of a triangular mesh, we sampled
points from the mesh uniformly at a sampling distance of
0.1 mm.

The reference SL scans are incomplete, so the distance
from some reconstruction points to the SL scan does not
represent the distance to the real surface of the object, specif-
ically, if the point lies near the missing part of the surface.
To calculate the measures using only the points for which the
distance to the real surface is reliable we used the approach
of [20], and extended it using our new occluding surface.

First, we only kept the points which lie in the free space
between the SL scanner and the object or near the surface
of the object: we checked if the depth of the point w.r.t. SL
scanner for any of its scanning positions is less than the depth
given by the SL scan, plus a small tolerance tsubsurf = 3 mm
to keep the points just below the surface for evaluation.

Next, to evaluate the precision metric, we checked if a
point is closer to the real surface of the object than a distance
threshold. For every reconstructed point, we calculated the
distance to the SL scan and the distance to the occluding sur-
face. If the distance to the SL scan was below the threshold,
we considered the point to be closer to the real surface than
the threshold. If the distance to the occluding surface was
above the threshold, we considered the point to be farther
from the real surface than the threshold. In any other case (in
which the point can only be closer to the occluding surface
and farther from the SL scan than the threshold, since the
occluding surface encloses the SL scan by definition), we
considered the distance from the point to the real surface to
be unknown and excluded the point from the calculation of
the measure.

To visualize the distance from the reconstruction to the
reference and to calculate the mean distance we used a simi-
lar strategy and considered the distance to the real surface to
be unknown whenever the point was closer to the occluding
surface than to the SL scan. To account for the approximate
nature of our occluding surface and to prevent computational
instabilities at points where it must coincide with the SL
scan exactly in case of exact calculations, we replaced the
distance to the occluding surface in all calculations by its
value increased by εocc = 0.1 mm.

G. Complete evaluation results
In Figures 5 to 1111 we show qualitative evaluation of

3D reconstruction methods. For Neural RGB-D surface
reconstruction we show the results only for four scenes:
two relatively easy ones, based on performance of all the
methods, dragon and small_wooden_chessboard,
and two relatively hard ones green_flower_pot and
white_box.

In each figure in the first column titled Reconstruction, we
show the reconstruction produced by each method, and at the
bottom of this column we show the reference surface from
the SL scanner. In the column Accuracy on reconstruction,
we show the reconstructed surface with color-coded distance
to the reference surface; at the bottom of this column we
show a photo of the scene. In the column Accuracy on
reference, we show the reference surface, with the color
showing the distance from the reconstruction to the reference.
For each vertex of the reference surface, the distance is
averaged over the reconstructed points for which this vertex
is the closest one. Thanks to this projection of the distance
values from the reconstructed points to the reference surface,
these images show the accuracy of all points not just the
ones closest to the camera. In the column Completeness on
reference, we show the reference surface with color-coded
distance to the reconstructed surface.

We use two colormaps for two different scales of error. In
the last three columns, the points with no definite value of
the distance are grey.

Since the methods TSDF Fusion, RoutedFusion, Sur-
felMeshing, and Neural RGB-D surface reconstruction pro-
duce the surface with a significant error, and in particular
deep below the reference surface, we increased the value of
sub-surface tolerance tsubsurf for these methods from 3 mm
to 20 mm.

In Figures 112 to 2181 we show the recall, precision, and
F-score curves for reconstructed surfaces produced by the
methods for each scene. Each curve represents the measure
in percent for different values of the distance threshold τ
in millimeters. Additionally, we mark the mean distance
from the reference to the reconstruction for each method
with a vertical dashed line on the recall plot, and the mean
distance from the reconstruction to the reference with a ver-
tical dashed line on the precision plot. Note that for some
methods these lines may be out of the plot range.

Finally, in Figures 3 and 4 we show the values of the
recall and precision metrics calculated with the distance
threshold τ = 0.5 mm for the reconstructions produced by
the RGB-based methods COLMAP, ACMP, VisMVSNet,
UniMVSNet, and NeuS. The value of the measure for each
method is represented by the right edge of the bar with the
respective color. The scenes in each figure are sorted by the
best result on the scene.

1See at skoltech3d.appliedai.tech/data/skoltech3d supp results.pdf
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H. Material properties in our dataset
We provide more information on the qualitative descrip-

tors of surface reflection parameters assigned to each object
and their relation to performance indicators for various re-
construction methods.
Identification of surface properties. As outlined in the
main text, all labels were assigned to objects by visually
inspecting photos of each object, to provide a preliminary
assessment of the importance of various factors for recon-
struction quality. Multiple photos of each object were used,
with backlight proving particularly useful to establish the
degree of translucency. The labels refer to the dominant
material or materials of the objects, which have most influ-
ence on integral metrics of reconstruction quality. While
this classification is imprecise and not a substitute for photo-
metric measurements, as we use only rough estimation for
each property, typically 3 buckets, we expect that visually
assigned labels are highly correlated with the actual physi-
cal parameters. Where necessary, more than one label was
assigned (e.g., for objects consisting of multiple parts with
distinct reflectivity properties, with no single dominant mate-
rial); in this case several labels for some properties are used
simultaneously.

Most of our labels are aligned with typical parameters of
simple reflectance models: diffuse and specular reflection
coefficient, shininess/roughness, measuring the reflection
peak width, and translucency.

• Translucency. We assess the degree of translucency for
the materials of the large parts of the object, from none
(the default), through low, medium, high, all the way to
completely transparent.

• Reflection sharpness. We characterize how sharp the
reflectance function peak is, if highlights are present on the
object (i.e., it is not purely diffuse), grouping the objects
into four categories, from low to very high.

• Specularity. We visually estimate the ratio of specular
to diffuse reflection for the dominant object materials, re-
sulting in a degree of manifestation of view-dependent
highlights, complementing mirror-like tag with a weaker
label. We distinguish between no view dependent high-
lights (diffuse), largely diffuse highlights (low), somewhat
diffuse light reflections and wide highlights (medium), and
narrow highlights for partially mirror-like surfaces where
one can only see sharp reflections of lights (high).

• Mirror-like. A binary tag for surfaces for which, in
addition to a near-perfect reflection peak, the diffusive
component is low relative to specular. This label overlaps
very high reflection sharpness labels.

• Metallic. A binary tag for surfaces made of metal; com-
pared to dielectric surfaces, these surfaces are always com-
pletely non-transparent, and the specular component of
reflected light tend to have the same color as diffuse, while
for dielectric materials it is closer to the color of the inci-
dent light.

• Geometric features. We visually assess the dominant
qualitative scale of geometric structures of the surface, if
any. We seek to distinguish between fine 3D structure with
characteristic scale close but above SLS 3D resolution
(small), a larger, discernable geometry with feature size
equal to a small fraction of the object size (medium). Addi-
tionally, among surfaces lacking a dominant feature scale,
we identified those with flat areas of sufficiently large size
to make an impact on overall reconstruction quality (flat
label), in the absence of 3D texture.

• Texture type. We differentiate between several types of
textured surfaces: most of the surface covered by high-
frequency image texture (color), sufficiently small scale
(below or close to what the scanner can resolve), high-
frequency displacement variation (3D), or other texture-
like imperfections such as dirt, speckles, or visible rough-
ness (imperfections).

Correlating properties and reconstruction performance.
Most surface reflectance features mentioned above are ex-
pected to influence performance of common reconstruction
methods.

We use data-driven approach to model the variability in a
given measure of reconstruction performance caused bydif-
ferent reflectance properties. Viewing all measures described
in Appendix F as target variables, we constructed a numer-
ical feature representation for each scene in our dataset;
and used sparse L1 regularised (Lasso) regression [21] to
determine how each surface reflectance feature modulates
reconstruction performance in each scene.

As we wanted to determine which features had statistically
the most influence on reconstruction performance, we used
the automatic feature selection mechanism built into the
Lasso algorithm.

Our target variables were precision P (0.5mm), recall
R (0.5mm), and F-score F (0.5mm) for the image-based
methods ACMP, COLMAP, VisMVSNet, and UniMVSNet
(Appendix E). For constructing the feature representation of
each scene, we formed 25 binary features from the 7 prop-
erties mentioned above by encoding the presence of each
surface property as 1, and its absense as 0. For fitting
the model, we used the implementation of Lasso available
in scikit-learn [10]; we z-scored all features, and, for
each target variable, sought to find an optimal value of the
regularisation parameter α (a minimizer of RMSE measure)
using leave-one-out cross-validation by varying it over a
range [0.01, 2.0], and record the values of the R2 statistic,
the regularization weight α as well as the regression weights
of the final fit.

Table 2 displays (normalized) values of coefficients
weighting the (normalized) value of each feature in each
constructed linear model. Most regression problems
have demonstrated a consistent value of the regularization
weight α ∈ [0.18, 0.57] with an average of 0.36; the values
of coefficient of determination R2 vary from 0.24 to 0.54
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with a mean of 0.43, indicating that a reasonable perfor-
mance has been achieved.
Factors affecting algorithms performance. Using the pro-
cess described above, we have identified five labels having
the most pronounced negative effect on reconstruction qual-
ity for image-based MVS methods, according to a mean
F-score across methods: very high, high, or medium reflec-
tion sharpness, high specularity, medium-scale geometric
features; additionally, a negative effect from high translu-
cency, low specularity is also expected, unlike moderate but
notable contribution of non-metallic and diffuse materials.
Conversely, having any type of texture (either color, 3d, or
texture-like surface imperfections) contributes positively to
reconstruction performance as one expect for MVS-type
algorithms; the same can be said about non-translucent ob-
jects.

We consider this study very preliminary, given the ap-
proximate nature of our labels. Its results are encouraging
as these show clear correlation between surface reflectance
properties and algorithm performance.
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Figure 3. Recall for the RGB-based methods for all scenes with the distance threshold τ = 0.5 mm.
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Figure 4. Precision for the RGB-based methods for all scenes with the distance threshold τ = 0.5 mm.
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Scene type Data provided Target tasks

DTU 2 RGB
 unknown model 1200×1600 — ✓ —

6DOF 
robotic 49 or 64 8 80 13.4M 27K  small objects

• intrinsics, extrinsics
• raw RGB
• undistorted RGB
• surfel clouds
• voxels where GT is known

MVS

ETH3D (hi) Nikon D3X, 
Faro Focus X 330 

6048×4032
— ✓ — tripod 10-70 U 13 train

12 test 28M 11K in/outdoor large 
scenes

• intrinsics, extrinsics
• raw RGB
• undistorted RGB
• raw 3D scans
• scans with outliers removed
• rendered depth maps 

MVS

ETH3D (lo) 4 global shutter, Faro 
Focus X 330 752×480 — ✓ Mono handheld 160-300 U 5 train

5 test 28M 10K in/outdoor large 
scenes same as ETH3D hi-res MVS, stereo

TnT
DJI Zenmuse X5R,
Sony a7S II,
Faro Focus X 330

3840×2160 — ✓ RGB handheld
+ gimbal 150-500 U 7 train

14 test 5.5M-53.4M 148K
large objects, 
in/outdoor large 
scenes

• raw videos
• sets of extracted RGB
• raw 3D scans
• point clouds
• camera params 
  (extracted with COLMAP)

SfM and MVS 
pipelines,
view synthesis

BlendedMVS / 
MVG unkown RGB cameras 1536×2048 

(rescaled) — — unknown 20-1000 U

113 in 
MVS

502 in 
MVG

—
18K/
110K

MVS:large 
outdoor,
small scale objects,
sculptures
MVG: mostly 
aerial imaging

MVS and MVG:
•  intrinsics and extrinsics
• 768x576 rendered RGBD 
• masked rendered RGB 
MVS only:
• 2048x1536 rendered RGBD
• reconstructed meshes 

MVS (including 
training)

Redwood PrimeSense Carmine 1280×1024 640×480 RGBD handheld — U 10K — 144K medium objects • RGBD
• for 398 scenes, meshes

SUN RGBD

RealSense, 
Xtion, 
Kinect v1
Kinect v2

1920×1080 
640×480

628×428
512×424 
640×480 — handheld — U unknown — 10K indoor scenes

• 2D polygon object segmentation;
• 3D object bounding boxes,
• 3D polygon  room layouts.

classification, 
segmentation

BigBIRD
5x Canon Rebel T3, 
5x  PrimeSense 
Carmine 1.08 

4272×2848 640×480 —

fixed 5 
cameras+ 
turntable

600 1 120 — 75K small objects

• hi-res RGB
• low-res RGBD
• point clouds for each scan
• merged point clouds

instance recognition, 
category recognition,
3D reconstruction

CORBS Kinect,
3Digify 1920×1080 512×424 

✓ RGBD handheld
(tracked)

5 trajectories, 
700-7000  
frames each

U 4 unknown 47K indoor scenes

• RGBD 
• IR 
• camera trajectories 
• reconstructed mesh

SLAM

ScanNet Structure 1296×968 640×480 RGBD handheld — U 1513 — 2.5M indoor scenes

• intrinsics, camera trajectories
• reconstructed meshes
(semantically labeled)
• aligned CAD objects

classification, 
retrieval, 
voxel level annotation

ARKitScenes Faro Focus S70
Apple iPad Pro

4032×3024
3680×2760 256×192 ✓ RGB handheld — U 5047 — 450K indoor scenes

• intrinsics, camera trajectories
• reconstructed meshes
(semantically labeled)

classification, 
segmentation, 
depth upsampling

RGB-D-D LUCID Helios ToF
Huawei P30 Pro 3648×2736 640×480

240×180 — unknown — U 4811 — 4811 portraits, models, 
plants, lights • intrinsics, camera trajectories depth upsampling

Ours

2x DFK 33ux250
cameras
2x Huawei Mate 30 Pro
RealSense D435
Kinect V2 
RangeVision Spectrum

2448×2048 
7296×5472
1920×1080

240×180
512×424
1280×720

✓ —
6DOF 
robotic 100 14 107 9.5M-66.5M 877K small objects

• intrinsics, extrinsics
• RGB: cameras
• undistorted RGB
• RGBD: phones, Kinect, RealSense
• undistorted RGBD
• raw IR: phones, Kinect, RealSense
• raw 3D scans
• reconstructed mesh
• occluding mesh

MVS,
3D reconstruction,
depth fusion,
depth upsampling

Table 1. Comparison of our dataset to the most widely used related datasets. U indicates uncontrolled lighting; frames are counted per
sensor, i.e., all data from an RGB-D sensor are counted as a single frame. The number of separate images acquired may be considerably
larger (1.4 M for our dataset). All scenes, from both training and testing sets, were counted.
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Recall (0.5 mm) Precision (0.5 mm) F-score, thres=0.5mm
Parameter Value ACMP COL. Vis. Uni. ACMP COL. Vis. Uni. ACMP COL. Vis. Uni. Mean

Translucency

none 0 0 0.91 1.45 0 1.3 0.48 1.57 0 1.04 0 1.85 0.72
low -0.23 0 0.3 0 0 0 0 0 0 0 0 0 0

medium 0.67 0 0.62 0.83 0 0 0 0 0 0 0 0.38 0.09
high -1.72 -1.15 -1.98 -1.81 -1.93 -1.36 0 -0.56 -1.88 -1.53 -0.48 -1.19 -1.27

Reflection 
sharpness

no refl. 0 0 -0.17 0 0 0 0 0 0 0 0 0 0
low -0.83 -0.8 -0.64 -1.82 -0.56 0 1.13 0 -0.52 -0.57 0 -0.62 -0.43

medium -2.05 -0.58 -3.87 -3.37 -2.6 -2.45 -1.57 -3.26 -2.3 -2.18 -2.14 -3.32 -2.49
high -1.59 -0.12 -3.22 -1.46 -2.41 -2.93 -1.03 -3.66 -2.04 -2.34 -1.34 -2.71 -2.11

very high -2.24 -1.47 -4.8 -3.47 -3.99 -3.46 -0.91 -4.21 -3.4 -3.37 -1.51 -4.11 -3.1

Specularity

diffuse -1.81 0 -3.66 -2.15 -1.15 0 0 0 -1.21 -0.5 0 -1.32 -0.76
low -0.75 -0.28 -4 -2.32 -1.39 -0.97 0 -1.02 -1.28 -1.32 0 -2.08 -1.17

medium 0 0 -2.07 0 0 0 0 0.76 0 0 0 0 0
high -1.66 -0.64 -4.33 -2.79 -2.02 -1.69 -0.91 -1.08 -1.91 -1.35 -1.56 -2.29 -1.77

Geometric 
features

small 0 0.06 2.49 1.05 0 0 0.47 0 0.06 0.29 1.15 0.59 0.52
medium -1.58 -1.1 -0.79 -2.31 -1.43 -1.25 0 -2.08 -1.5 -1.42 0 -2.42 -1.34

flat 0.23 0 1.15 0.59 2.08 0.27 0 0 1.58 0 0.3 0.32 0.55
NA 0 0 0 0 0 0 0 0 0 0 0 0 0

Mirror-like
no 0 0 0 0 0 0 0 0 0 0 0 0 0

yes 0.42 0.72 0.85 0.23 0 1.13 1 1.38 0 1.3 0.8 0.83 0.73

Metallic
no -0.62 -0.21 -0.23 -1.3 -1.25 -0.34 -1.24 -1.16 -1.14 -0.24 -1.21 -1.27 -0.97

yes 0 0 0.67 0 0 0 0 0 0 0 0 0 0

Texture type
color 2.61 2.41 3.9 3.41 3.65 2.48 2.31 2.97 3.36 2.59 2.73 3.34 3.01

imperf. 2.06 1.96 5.1 4.14 2.61 2.01 1.24 3.4 2.59 2.43 2.32 3.92 2.81
3d 1.23 1.89 2.42 1.51 3.43 4.07 3.21 4.14 2.8 3.13 2.88 3.01 2.96

Coef. of det. R2 0.39 0.24 0.54 0.41 0.46 0.47 0.39 0.49 0.44 0.4 0.44 0.48
Reg. coef. α 0.26 0.57 0.18 0.3 0.37 0.4 0.39 0.38 0.37 0.28 0.54 0.27

Table 2. Data-driven estimates of surface reflection features in our datasets. Note the negative effect on reconstruction quality (rightmost
column, negative numbers highlighted in red ) of very high, high, or medium reflection sharpness, high specularity, medium-scale geometric
features. Conversely, note the positive contribution to reconstruction performance of color textures, 3d textures, or texture-like surface
imperfections (rightmost column, large positive values highlighted in blue ). COL., Vis., and Uni. denote COLMAP, VisMVSNet, and
UniMVSNet respectively.
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