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(a) Data captured with all sensors (b) Lighting examples (c) Objects from dataset and 3D reconstruction error
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Figure 1. Our dataset contains RGB-D data captured (a) with 7 different devices, (b) under various lightning conditions. (c) We focus on

materials challenging for 3D reconstruction algorithms, such as featureless (F), highly specular with sharp reflections (S), or translucent (T),

as illustrated with reconstructions produced by state-of-the-art algorithms (compare with an “easy” object on the bottom right).

Abstract

We present a new multi-sensor dataset for multi-view 3D

surface reconstruction. It includes registered RGB and depth

data from sensors of different resolutions and modalities:

smartphones, Intel RealSense, Microsoft Kinect, industrial

cameras, and structured-light scanner. The scenes are se-

lected to emphasize a diverse set of material properties

challenging for existing algorithms. We provide around

1.4 million images of 107 different scenes acquired from 100

viewing directions under 14 lighting conditions. We expect

our dataset will be useful for evaluation and training of 3D

reconstruction algorithms and for related tasks. The dataset

is available at skoltech3d.appliedai.tech.

*Work partially performed while at Skolkovo Institute of Science and

Technology.

1. Introduction

Sensor data used in 3D reconstruction range from highly

specialized and expensive CT, laser, and structured-light

scanners to video from commodity cameras and depth sen-

sors; computational 3D reconstruction methods are typically

tailored to a specific type of sensors. Yet, even commod-

ity hardware increasingly provides multi-sensor data: for

example, many recent phones have multiple RGB cameras

as well as lower resolution depth sensors. Using data from

different sensors, RGB-D data in particular, has the potential

to considerably improve the quality of 3D reconstruction.

For example, multi-view stereo algorithms (e.g., [55, 82])

produce high-quality 3D geometry from RGB data, but may

miss featureless surfaces; supplementing RGB images with

depth sensor data makes it possible to have more complete

reconstructions. Conversely, commodity depth sensors often

http://skoltech3d.appliedai.tech


lack resolution provided by RGB cameras.

Learning-based techniques substantially simplify the chal-

lenging task of combining data fom multiple sensors. How-

ever, learning methods require suitable data for training. Our

dataset aims to complement existing ones (e.g., [13, 28, 31,

58, 63, 83]), as discussed in Section 2, most importantly, by

providing multi-sensor data and high-accuracy ground truth

for objects with challenging reflection properties.

The structure of our dataset is expected to benefit research

on 3D reconstruction in several ways.

• Multi-sensor data. We provide data from seven differ-

ent devices with high-quality alignment, including low-

resolution depth data from commodity sensors (phones,

Kinect, RealSense), high-resolution geometry data from a

structured-light scanner, and RGB data at different resolu-

tions and from different cameras. This enables supervised

learning for reconstruction methods relying on different

combinations of sensor data, in particular, increasingly

common combination of high-resolution RGB with low-

resolution depth data. In addition, multi-sensor data sim-

plifies comparison of methods relying on different sensor

types (RGB, depth, and RGB-D).
• Lighting and pose variability. We chose to focus on a

setup with controlled (but variable) lighting and a fixed set

of camera positions for all scenes, to enable high-quality

alignment of data from multiple sensors, and systematic

comparisons of algorithm sensitivity to various factors. We

aimed to make the dataset large enough (1.39 M images of

different modalities in total) to support training machine

learning algorithms, and provide systematic variability

in camera poses (100 per object), lighting (14 lighting

setups, including “hard” and diffuse lighting, flash, and

backlighting, as illustrated in Figure 1b), and reflection

properties these algorithms need.
• Object selection. Among 107 objects in our dataset, we

include primarily objects that may present challenges to

existing algorithms mentioned above (see examples in

Figure 1c); we made special effort to improve quality of

3D high-resolution structured-light data for these objects.

Our focus is on RGB and depth data for individual objects

in laboratory setting, similar to the DTU dataset [28], rather

than on complex scenes with natural lighting, as in Tanks

and Temples [31] or ETH3D [58]. This provides means for

systematic exploration and isolation of different factors con-

tributing to strengths and weaknesses of different algorithms,

and complements more holistic evaluation and training data

provided by datasets with complex scenes.

2. Related work

Many datasets for tasks related to 3D reconstruction were

developed (see, for example, a survey of datasets related

to simultaneous localization and mapping (SLAM) [38]);

we only discuss datasets most closely related to ours. A

summary of comparisons to key datasets from previous work

Dataset  S
en

so
r

ty
pe

s

 R
G

B
,

M
Pi

x
 D

ep
th

, 
M

Pi
x

H
R

 g
eo

.

 P
os

es
/s

ce
ne

 L
ig

ht
in

g

 #
 S

ce
ne

s

 #
 F

ra
m

es

DTU RGB (2)
SLS

2 ✓ 49/64 8 80 27K

ETH3D RGB
TLS 

24
—

✓ 10–70 U 24 11K

TnT RGB 
TLS

8
—

✓ 150–300 U 21 148K

BlendedMVG unknown 3/0.4 20–1000 U 502 110K
BigBIRD RGB     (5)

RGB-D (5)
12

1.2
—

0.3
600 1 120 144K

ScanNet RGB-D 1,3 0,3 NA U 1513 2.5M
Ours RGB        (2)

RGB-D 1 (2)
RGB-D 2
RGB-D 3
SLS

5
40
2
2

—

—
0.04
0.2
0.9
—

✓ 100 14 107 877K

[28]

[58]

[31]

[83]

[63]

[13]

Table 1. Comparison of our dataset to the most widely used

related datasets. U indicates uncontrolled lighting; frames are

counted per sensor, i.e., all data from an RGB-D sensor are counted

as a single frame. The number of separate images acquired may be

considerably larger (1.4 M for our dataset). All scenes, from both

training and testing sets, were counted.

is shown in Table 1.

RGB datasets with high-resolution 3D ground truth. A

number of datasets are designed for multi-view stereo (MVS)

methods, such as PatchMatch-based [4, 55, 80, 81], learning-

based [9, 21, 34, 40, 70, 76, 82, 87], or hybrid methods [19,

33]. These datasets are also used for evaluation of methods

reconstructing an implicit surface representation encoded by

a neural network from a set of RGB images [45, 46, 71, 84],

and in the novel view synthesis task [2, 42, 50, 51, 72].

Datasets from this category typically include high-

resolution RGB, either photo [1, 28, 58, 83] or video [31],

and high-resolution 3D ground truth obtained with a

structured-light scanner (SLS) [1] or a terrestrial laser scan-

ner (TLS) [31, 58]. The Middlebury datasets [52, 53, 59]

focus on two-frame stereo, providing accurate ground truth

for disparity in addition to RGB.

In this group, the DTU dataset [28] with controlled light-

ing and high-resolution ground truth is most often used for

training learning-based MVS methods. Most other MVS

datasets, while containing some images of isolated objects,

focus on complete scenes, often collected with hand-held,

freely positioned cameras [31, 58, 66].

Compared to previously developed datasets with high-

resolution 3D scanner data, we provide the largest number

of sensors, objects, and lighting conditions, and the most

challenging objects.

Datasets with low-resolution depth. Datasets designed

for tasks like SLAM, object recognition and segmentation

are often collected using low-resolution depth sensors like

Microsoft Kinect or Intel RealSense [7, 13, 44, 47, 63, 64];

some of these datasets combine high-resolution RGB with

low-resolution depth (e.g., [13, 63]) but do not provide high-



Figure 2. Our acquisition setup (view in zoom). We included

a diverse set of seven commonly used RGB and RGB-D sensors,

mounting them on a shared metal rig to aid data alignment. We con-

structed a metal frame surrounding the scanning area and installed

various light sources to provide 14 lighting setups.

resolution ground truth for depth. A notable exception is

CoRBS dataset [73], but it contains only four scenes. The

degree of control over camera position and lighting in these

datasets varies from complete [11, 63] to none (e.g., [47]).

These datasets are often used for qualitative evaluation

of non-learning-based depth fusion methods [15, 27, 57, 77]

which produce voxel- or surfel-based surface representations

from depth maps; they are also used to train learning-based

methods which produce voxel-based surface representation

from RGB [43, 67], depth [14, 16], or RGB-D [17] data.

These methods are likely to benefit from including our high-

resolution depth data in training.

Synthetic datasets ShapeNet [8] and ModelNet [78] are

often used to train learning-based depth fusion methods,

e.g., [25, 41, 74, 75]. Synthetic ICL-NUIM SLAM bench-

mark [22] is used for evaluation, for example, in [15, 57, 77].

Such approach is limited by the differences between real-

world and synthetic data.

Synthetic benchmarks [6, 32, 35] allow to generate large

training sets easily via simulation of the acquisition process.

However, real-world data is still required to faithfully model

sensors, train generators, and test trained algorithms. Our

dataset can be used for these purposes.

Datasets with multiple depth resolutions. Recently pro-

posed RGB-D-D [23] and ARKitScenes [5] datasets make

a step in a similar direction to ours, pairing low-resolution

depth data acquired by smartphones with medium resolu-

tion (0.3 MPix) time-of-flight data and high-resolution laser

scans, respectively.

Our dataset contains inputs from multiple depth sensors

of low and high resolutions along with associated registered

higher resolution RGB images, providing a framework for

evaluating and training both depth fusion and RGB-D fusion

algorithms previously trained on synthetic data, as well as

developing new ones. Having multiple depth resolutions also

supports applications such as depth map super-resolution [26,

65, 69, 79] and depth map completion [29, 88].

Device # RGB Depth IR Intr. Extr. Rec.
DFK 33UX250 2 ✓* — — ✓ ✓ —
Mate 30 Pro 2 ✓* ✓ ✓ ✓ ✓ —
RealSense D435 1 ✓* ✓* ✓✓* ✓ ✓ —
Kinect v2 1 ✓* ✓ ✓ ✓ ✓ —
Spectrum 1 — ✓ — — — ✓

Table 2. Composition of our dataset. We provide RGB, depth,

and IR images, intrinsic (Intr.) and extrinsic (Extr.) calibration

parameters, and a reference mesh reconstruction (Rec.). The data

marked with * is captured per lighting setup.

Similarly to our dataset, a concurrent work [62] comple-

ments RGB-D sequences from Intel RealSense with regis-

tered ground-truth captured by structured-light scanning. We

provide registered depth images from common sensors at

three levels of accuracy, and a controlled lighting variation.

3. Dataset

3.1. Overview

Our dataset consists of 107 scenes with a single everyday

object or a small group of objects on a black background,

see examples in Figure 1 and a complete list of scenes in the

supplementary material.

We collected the dataset using multiple sensors mounted

on Universal Robots UR10 robotic arm with 6 degrees of

freedom and sub-millimeter position repeatability. We used

the sensors shown in Figure 2 on the left: (1) RangeVision

Spectrum structured-light scanner (SLS), (2) two The Imag-

ing Source DFK 33UX250 industrial RGB cameras, (3) two

Huawei Mate 30 Pro phones with time-of-flight (ToF) depth

sensors, (4) Intel RealSense D435 stereo RGB-D camera,

and (5) Microsoft Kinect v2 ToF RGB-D camera.

We surrounded the scanning area with a metal frame to

which we attached the light sources, shown in Figure 2 on

the right: seven directional lights, three diffuse soft-boxes,

and LED strips which imitate ambient light. We also used

flashlights on the phones as the light source moving with

the camera. To prevent cross-talk between depth sensors we

added external shutters that close the infrared (IR) projector

of one sensor while the others are imaging.

For each scene, we moved the camera rig through 100

positions on a sphere with a radius of 70 cm around the

object, using the same trajectory for all scenes, and collected

the data using 14 lighting setups. For each device, except

the SLS, we collected raw RGB, depth, and IR images, in-

cluding both left and right IR images for RealSense. In total,

we collected 15 raw images per scene, camera position, and

lighting setup: 6 RGB, 5 IR, and 4 depth images, as illus-

trated in Table 2 and Figure 1a. As the IR and depth data

from ToF sensors of the phones and Kinect is unaffected

by the lighting conditions, we captured this data once per

camera position. For the SLS we collected partial scans from

27 positions and combined them into a single scan, as we



describe further.

In our dataset, we included a large number of objects

with challenging and varied surface material properties, as

shown in Table 3. A set of qualitative labels corresponding

to the key surface reflection parameters were assigned to

each object based on visual estimation of these parameters.

For example, Specularity represents the ratio of specular to

diffuse reflectance for one of the dominant materials of the

object, and Reflection sharpness characterizes how sharp the

reflectance function peak is. These labels and their relation

to performance of 3D reconstruction methods are discussed

in the supplementary material.

3.2. Data acquisition and post­processing

Here, we summarize the main steps of our data acquisition,

including selection of camera settings, camera calibration,

and preparation of objects for scanning, and then describe

our post-processing pipeline, which employs new methods

for high-accuracy data registration and automatic generation

of occlusion-valid reference depth images from SL scans.

The data acquisition procedure for each scene consisted

of the following steps:

1. We automatically selected optimal camera exposure and

gain settings for the scene.

2. We performed a preliminary SL scan, and if it was incom-

plete or low quality due to surface reflection properties,

we applied a vanishing opaque matte coating to the object.

3. We scanned the object with the SLS from 27 viewpoints.

4. For coated objects, we accelerated the coating sublima-

tion with hot air while keeping the object stationary. We

then collected additional validation SL scans from five

viewpoints to verify that the object was not deformed

during coating removal.

5. We acquired RGB and low-resolution depth sensor data.

Sensor exposure/gain selection is critical for obtaining use-

ful data: uniform settings result in frequent over- or underex-

posure due to variations of object surface properties. Hard-

ware auto-exposure, being biased by the black background,

proved to be inadequate for our setup and produced too

high exposure/gain. Instead, we designed an auto-exposure

algorithm inspired by [60, 61], which we used to find op-

timal camera settings for each scene, lighting, and sensor

individually.

To find the minimal noise camera settings, we extracted

the foreground mask of the scene from the images with

and without the object using the method of [36], and then

maximized the Shannon entropy of the foreground image

w.r.t. the exposure value while keeping the gain at minimum.

We then additionally maximized the entropy w.r.t. the gain

value while keeping the found exposure value, to prevent

the underexposure of very dark objects. To find the real-

time / high-noise camera settings we swapped exposure and

gain, optimizing the gain first while keeping the exposure at

30 FPS, and then optimizing the exposure while keeping the

Feature Possible values Dataset statistics
Specularity diffuse/low/medium/high 40/15/35/24
Refl. sharpness no refl./low/medium/high/very high 26/20/23/29/10
Translucency none/low/medium/high/transparent 93/7/7/5/2
Mirror-like yes/no 11/96
Metallic yes/no 9/99
Texture type color/3D/imperfections 9/24/43
Geom. features small/medium/no dominant/flat 19/22/47/30

Table 3. Surface material properties in our dataset.

found gain.

We obtained minimal noise camera settings for each light-

ing variant, and real-time settings only for the dim flash and

ambient lighting. We picked the settings for a single position

of the rig per scene and used these settings for all positions.

For RealSense, we also picked the optimal power of the IR

projector out of 12 options, selecting the one leading to the

lowest number of depth pixels missing a value.

Figure 3. A partial scan without

(left) and with coating (right).

Preparation of objects

for 3D scanning. For our

dataset we picked the ob-

jects with surface mate-

rial properties that chal-

lenge common sensors

and reconstruction algo-

rithms. However, these

properties often challenge

the SLS too, making it

hard to obtain reliable high-resolution reference data. To get

the highest-quality SL scans we applied a temporary coating

to about half of the scanned objects (see Figure 3).

Post-processing of structured-light scans. To simplify the

use of the SL data for evaluation and training we merged raw

partial scans into a single clean surface reconstruction. For

this, we globally aligned partial scans using a variant of the

iterative closest point algorithm, initialized with calibrated

scanner poses. We assessed the alignment quality by com-

paring the inter-scan distance to the scanner resolution and

in case of poor alignment, due to a lack of geometrical fea-

tures on the object, re-scanned the object with attached 3D

markers. From the aligned scans, we reconstructed a surface

mesh using screened Poisson Surface Reconstruction [30]

with the cell size of 0.3 mm, corresponding to a conservative

estimate of the scanner resolution. Finally, we cleaned the

surface keeping only the vertices close to the raw scans and

manually removing the scanning and reconstruction artifacts

and the supporting stand. We refer to the resulting surface

as the SL scan.

For the temporary coating of the scanned objects we used

Aesub Blue scanning spray. It sublimates from the surface

at room temperature in a few hours, which we reduced to

5–15 minutes by slightly heating the object with a heat gun.

To detect potential object deformations, we aligned the five

validation scans to the SL scan and visually checked for
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Figure 4. Calibration refinement results. Left: distribution of

COLMAP reconstruction errors in mm before camera pose refine-

ment (blue) and after (orange). Right: distribution of relative Kinect

depth errors w.r.t. SLS before correction (blue) and after (orange).

distance variation indicating deformation. If a deformation

was localized only to an isolated part of the object (e.g., a

power cord) we removed this part from the scan, otherwise,

we excluded the whole object from the dataset.

Camera calibration. To measure the trajectories of the

sensors and their intrinsic camera parameters we used the

calibration pipeline of [56]. It is based on generic camera

models known to result in a more accurate calibration than

parametric camera models, commonly used in benchmarks

related to ours, including DTU and ETH3D.

Application of this calibration pipeline to our camera rig

as is was numerically unstable due to the large variability of

sensor properties, such as field of view and resolution. To

eliminate instability we split the calibration procedure into

several steps, as we describe in the supplementary material.

For all RGB and depth sensors and the SLS, we obtained

central generic camera models with several thousands param-

eters and the trajectory of the sensor in the global coordinate

system. The mean calibration error for different sensors at

different steps of the procedure was in the range 0.04–0.4 px,

or approximately in the range 0.024–0.15 mm.

We observed thermal effects to contribute noticeably to

calibration results, in particular, calibration errors drop by

factors of 2–10 if the devices warm up after power-on to

stable operating temperature. To reduce thermal drift in our

data we pre-warmed all devices for 1 hour before calibration

and at the beginning of each day of scanning.

Refinement of camera poses. Limited rig stiffness and vari-

ations in positioning of the robotic arm lead to a noticeable

deviation of the camera trajectory during scanning from the

calibrated trajectory, up to several pixels in image space.

We additionally refined individual sensor poses per scene

w.r.t. SL scan using a new approach inspired by [10, 18].

The idea of these works is to optimize a photometric dis-

crepancy between a sensor image and a render of a reference

texture on the scan to the image plane, with respect to the

pose of the sensor. In [10], geometric features of the scan,

such as normals, are used as the reference texture, while

in [18], poses for multiple viewpoints are optimized simulta-

neously and for each viewpoint the projections from images

from all other viewpoints are used as the reference. In both

cases, the mutual information between intensity distributions

of the sensor image and the render is used as the discrepancy

measure, and it is optimized using derivative-free NEWUOA

method [49]. We used the same overall idea but changed

both key components of the method: the reference texture

and the discrepancy measure.

The modification of the original method was required as

the previously proposed variants did not yield sufficiently

accurate results for our data. The variant of [10] assumes the

presence of photometric similarity between the render of the

scan surface and the photo of the real surface, which is often

not present, e.g., for a smooth surface with color texture,

and, importantly, relies on the match between the silhouettes

of the rendered scan and the real object in the photo, which

is often violated as not all parts of the object visible in

the photo may be scanned. Simultaneous optimization of

multiple viewpoints in [18] often results in pose drift.

Our approach is to use the raw SLS camera images as the

reference texture, since the scan is constructed from these

images and they are perfectly aligned. Instead of mutual

information between intensity distributions, which we found

to be often unstable, we optimized the smooth L1 distance

in deep CNN feature space. Inspired by [37], for feature ex-

traction we used a model pre-trained specifically for feature

matching [20].

For some camera poses and sensors, the direct alignment

to the SLS images was unstable, as these images were cap-

tured under SLS illumination, which differs significantly

from the illumination used for the other cameras. To further

stabilize the alignment procedure for the whole dataset, we

split it into three steps. First, we aligned, directly to the SLS

reference texture, a single image from an industrial RGB

camera, for a viewpoint selected for each scene individually

to maximize the alignment tightness. Then, we aligned the

images from the industrial RGB camera for the remaining

viewpoints successively, using the already aligned images as

the reference. Finally, for all the other sensors, we aligned

each image individually to the image from the industrial

RGB camera captured at the same position of the rig.

Using this sequential sensor alignment procedure we ob-

tained subpixel alignment accuracy in most cases. In Fig-

ure 4 left, we show that refinement of camera poses reduces

the error of a 3D reconstruction method.

Refinement of depth camera calibration. The lower qual-

ity depth sensors were calibrated by the manufacturers using

calibration systems different from the one we used for the

SLS and the camera trajectories. This leads to a misalign-

ment between the lower quality depth data and the SL scan,

which can be represented as a composition of a 3D rigid

transform, scaling and a non-linear warping [24, 68, 86, 89].

To reduce the misalignment, we used a correction model

dundist = S(u, v)S(draw), which transforms the raw depth

measurement draw at pixel (u, v) in the depth image to the

depth value in the 3D space of the SL scan, using the cubic

basis splines S(u, v) and S(d) defined on regular grids. We



Figure 5. Rendering SL depth with occluding surface. Although

the real surface of the object is solid (left), its SL scan is incomplete,

so the background parts of the object bleed through in the rendered

depth map (middle). Occluding surface helps to discard incorrect

depth values (right).

trained the model on depth images of a calibration pattern,

and as the reference used the calibration data from the same

system that we used for camera calibration.

In Figure 4 right, we show that refinement of depth camera

calibration reduces the error of a low quality sensor depth

w.r.t. the SL scan.

Rendering SL scans. Occluding surface. In many tasks

that we target, the ground-truth 3D data is needed in the form

of depth maps. At the same time, the SL scanning often

does not capture the complete object due to its geometric

limitations, so a direct rendering of a depth map from the

SL scan is likely to produce incorrect large depth values at

some points because closer parts of the surface are absent

from the scan, as illustrated in Figure 5 middle.

Previous works have addressed this problem by discarding

depth values either inconsistent with an MVS reconstruction

from RGB images [39], or occluded by a complete surface

reconstructed from the scan and adjusted manually [58]. We

follow the latter, more reliable approach, but propose a fully

automatic method for building the occluding surface.

An occluding surface for an object is any surface fully

enclosing the object. Our goal is to construct an occlud-

ing surface tight to the real surface of the object, using the

information about visibility of the real surface from the view-

point of the SLS camera during scanning. The depth values

rendered from the SL scan that differ from the values ren-

dered from such an occluding surface by more than a certain

threshold can then be identified as spurious and removed

from the generated depth maps.

To find the occluding surface we assume that the convex

hull of all partial SL scans C encloses the part of the ob-

ject that we are going to render. Conceptually, we find the

occluding surface as C \ ∪iCone(vi, Si), where the cone

Cone(vi, Si) encloses all the points between the surface of

the partial scan Si and the respective viewpoint of the SLS

camera vi. Intuitively, we carve the free space between the

scanner and the object out of the convex hull, for all positions

of the scanner.

The direct computation of such an occluding surface by

a sequence of boolean operations on closed meshes is ex-

tremely expensive as the number of triangles for each mesh

can be very large. Instead, we compute an accurate ap-

proximation by sampling all surfaces involved (we used the

sampling distance of 0.1 mm) and keeping only the points

that are in the interior of the convex hull and in the exterior

of all cones, which we check using depth testing. We then

reconstruct the occluding surface from these samples using

screened Poisson Surface Reconstruction.

The occluding surface obtained with this method can be

used to generate accurate, occlusion-valid depth images from

SL data as shown in Figure 5 right.

4. Experimental evaluation

We demonstrate the challenges of our dataset for RGB-

based 3D reconstruction methods, and additionally, demon-

strate one of the uses of our dataset as a benchmark to com-

pare methods of 3D reconstruction from different modalities.

For this, we tested 5 methods which reconstruct the surface

only from RGB data, 3 methods which use only depth data,

and one method which uses both modalities.

Methods. COLMAP [54, 55] is an RGB-to-3D reconstruc-

tion pipeline. It implements a non-learning-based multi-

view stereo (MVS) method: from multi-view RGB images,

the depth maps are estimated per-view and then fused into

a point cloud representing the reconstructed 3D surface.

COLMAP is commonly evaluated on benchmarks similar to

ours, so we include it as a baseline. ACMP [81] is a non-

learning, PatchMatch-based MVS method with planar prior,

which shows a strong performance on benchmarks such as

Tanks and Temples (TnT). VisMVSNet [87] and UniMVS-

Net [48] are learning, plane-sweeping-based MVS methods

with top performance on TnT benchmark. NeuS [71] is

a method which reconstructs the surface as a signed dis-

tance function (SDF) represented with a neural network

which is fitted directly to RGB images via differentiable

rendering. TSDF Fusion [12, 27] is a classical non-learning-

based depth-fusion approach. It reconstructs a truncated SDF

(TSDF) of a surface on a voxel grid via iterative integration

of depth maps. RoutedFusion [74] is a learning-based ex-

tension, which performs depth map integration using neural

networks. SurfelMeshing [57] is a non-learning-based depth-

fusion method that reconstructs the surface using a surfel

cloud as an intermediate representation. Neural RGB-D sur-

face reconstruction [3] is a recent method which, similarly to

NeuS, reconstructs the TSDF of a surface represented with a

neural network, but in contrast to NeuS, fits the network to

RGB and depth images.

Data. We tested the methods under the most favorable con-

ditions available in our dataset. We obtained the reconstruc-

tions using full-resolution images from all 100 viewpoints

for each scene, and the ground-truth camera poses and in-

trinsic camera models. For each data modality we used the

highest-quality option: the photos from one of the industrial

RGB cameras with the minimal noise settings, taken under

ambient light to rule out the effects of lighting, and the depth

maps from the ToF sensor of Kinect, of a higher resolution

than of the phones, and more stable than RealSense.



For the learning-based methods we tested the models

trained on prior datasets: DTU [28] and BlendedMVS [83]

for MVSNets, and ModelNet [78] for RoutedFusion. We

provide more details in the supplementary material.

Measures. We evaluated the reconstructions w.r.t. the full

SL scans using Precision, Recall, and F-score quality mea-

sures, similarly to the prior benchmarks [31, 58]. Precision

measures the reconstruction accuracy: we calculated it as

the percentage of the reconstruction points closer to the ref-

erence than a certain distance threshold. Recall measures

the reconstruction completeness: we calculated it as the per-

centage of the reference points closer to the reconstruction

than a threshold. F-score is the harmonic mean of these two

numbers, which, to be high, requires the reconstruction to

be both accurate and complete.

For a careful calculation of Precision and Recall two prob-

lems have to be considered. First, both the reconstruction

and the reference may have varying point densities, which

will cause uneven contribution of different parts of the sur-

face to the value of the measure. Second, the reference SL

scans are incomplete, so the distance from some reconstruc-

tion points to the SL scan does not represent the distance to

the real surface of the object, specifically, if the point lies

near the missing part of the surface. We addressed these

problems similarly to [58], extending the approach using

our new occluding surface. Specifically, we calculated each

measure in small cells of 3D space and then took the average

as the final value, and used only the points for which the dis-

tance to the real surface of the object is certain. We describe

this in more detail in the supplementary material.

Results. In Figure 6 we show the average performance on

our dataset for the tested methods. Each curve shows the

number of scenes that the respective method reconstructs

with a better value of the measure than the value on the

X axis. We tested Neural RGB-D surface reconstruction

only on a fraction of scenes, due to its long running time, so

we exclude the curve for this method.

In Figure 7 we show reconstructions for several scenes.

The top part of the figure shows the results produced by

methods of different types: an RGB-only UniMVSNet, an

RGB-only NeuS with neural representation, Neural RGB-D

surface reconstruction, and a depth-only TSDF Fusion. The

middle part shows the best result per scene w.r.t. Recall. The

bottom part shows the best result w.r.t. Precision.

In these figures we show the measures calculated with

the threshold of 0.5 mm. In the supplementary material we

show distributions of the measures for other values of the

threshold, distributions of additional quality measures, and

additional reconstruction visualizations.

Discussion. The best method w.r.t. Recall (ACMP) recon-

structs all scenes in our dataset on at least 53%, with the

distance threshold of 0.5 mm, but only half of the scenes

on 80% or more. The best method w.r.t. Precision and the

overall quality represented with F-score (VisMVSNet) re-

constructs all scenes with at least 32% accuracy and only 14

scenes with accuracy higher than 80%. This demonstrates

that our dataset contains plenty of challenges for state-of-

the-art 3D reconstruction methods. In particular, featureless

parts of the surface, especially with sharp reflections, are

often missing in the reconstruction, as illustrated in Figure 7.

At the same time, VisMVSNet significantly outperforms

UniMVSNet w.r.t. Precision and F-score and performs al-

most as well w.r.t. Recall. This is opposite to their relative

performance on prior benchmarks (TnT and DTU), which

indicates that our dataset poses a different set of challenges.

Comparison of the methods of different types shows that

reconstructions from depth maps are significantly less ac-

curate than reconstructions from RGB images, although

sometimes may be more complete, as illustrated at the top

of Figure 7. This demonstrates that these modalities can

complement each other. Similarly, NeuS, which uses a neu-

ral surface representation, fills-in the areas of the surface

challenging for RGB-based methods, but often inaccurately.

Remarkably, Neural RGB-D surface reconstruction produces

the surface of a significantly lower quality in comparison

to VisMVSNet and NeuS, while using the same input RGB

images and additionally the depth maps. This illustrates that

there is a room for development of 3D reconstruction meth-

ods that effectively use both modalities, and we believe that

our dataset will facilitate the development of such methods.

5. Conclusion

We presented a new dataset for evaluation and training of

3D reconstruction algorithms. Compared to prior datasets

the distinguishing features of ours include a large number of

sensors of different modalities and resolutions, depth sensors

in particular, selection of scenes presenting difficulties for

many existing algorithms, and high-quality reference data for

these scenes. Our dataset can support training and evaluation

of methods for many variations of 3D reconstruction tasks,

in particular, learning-based 3D surface reconstruction from

multi-view RGB-D data.

The main (intentional) limitation of our dataset is the

use of the laboratory setting: the focus on static isolated

objects with easy-to-separate background, the same camera

trajectory for all scenes, the laboratory lighting. Another

possible limitation is a small range of object sizes, limited

by the physical size of the setup.
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Izadi, and Christian Theobalt. BundleFusion: Real-Time

Globally Consistent 3D Reconstruction Using On-the-Fly Sur-

face Reintegration. ACM Transactions on Graphics, 36(3):1–

18, July 2017. 3

[16] Angela Dai, Daniel Ritchie, Martin Bokeloh, Scott Reed,

Jürgen Sturm, and Matthias Nießner. Scancomplete: Large-

scale scene completion and semantic segmentation for 3d

scans. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 4578–4587, 2018. 3

[17] Angela Dai, Yawar Siddiqui, Justus Thies, Julien Valentin,

and Matthias Niessner. Spsg: Self-supervised photomet-

ric scene generation from rgb-d scans. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pages 1747–1756, June 2021. 3

[18] Matteo Dellepiane and Roberto Scopigno. Global refinement

of image-to-geometry registration for color projection. In

2013 Digital Heritage International Congress (DigitalHer-

itage), volume 1, pages 39–46. IEEE, 2013. 5

[19] Simon Donne and Andreas Geiger. Learning non-volumetric

depth fusion using successive reprojections. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), June 2019. 2

[20] Hugo Germain, Guillaume Bourmaud, and Vincent Lepetit.

S2dnet: Learning accurate correspondences for sparse-to-

dense feature matching. arXiv preprint arXiv:2004.01673,

2020. 5

[21] Xiaodong Gu, Zhiwen Fan, Siyu Zhu, Zuozhuo Dai, Feitong

Tan, and Ping Tan. Cascade cost volume for high-resolution

multi-view stereo and stereo matching. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), June 2020. 2

[22] A. Handa, T. Whelan, J.B. McDonald, and A.J. Davison. A

benchmark for RGB-D visual odometry, 3D reconstruction

and SLAM. In IEEE Intl. Conf. on Robotics and Automation,

ICRA, Hong Kong, China, May 2014. 3

[23] Lingzhi He, Hongguang Zhu, Feng Li, Huihui Bai, Runmin

Cong, Chunjie Zhang, Chunyu Lin, Meiqin Liu, and Yao

Zhao. Towards fast and accurate real-world depth super-

resolution: Benchmark dataset and baseline. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pages 9229–9238, June 2021. 3

[24] Daniel Herrera, Juho Kannala, and Janne Heikkilä. Joint
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